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NONLINEAR INVERSE HEAT TRANSFER CALCULATIONS IN GUN BARRELS*

by

Alfred S. Carasso
Center for Applied Mathematics
National Bureau of Standards

Washington, DC 20234

ABSTRACT

We consider the problem of determining the temperature history inside a gun
barrel from embedded thermocouple measurements at some distance away from the
inside wall. This inverse problem leads to an improperly posed initial value
problem for a nonlinear system of partial differential equations, whenever the
thermal properties are temperature dependent. We discuss a step-by-step
marching algorithm for the numerical computation of such problems. The scheme
is stabilized by appropriately filtering in the frequency domain at each step.
We illustrate this technique with a numerical experiment on a nonlinear
problem whose exact solution is known. The basic ideas are applicable to
other unstable evolution equations,

I. Introduction

This report summarizes the results of an important computational

experiment on a nonlinear inverse heat conduction problem whose

exact solution is known. We consider the problem of determining

the temperature history at the inside wall of a gun barrel, from

embedded thermocouple measurements at various points in the annular

metallic region between the inner and outer radii of the cannon.

As the shell is fired, a continuous trace is recorded at each

thermocouple, providing temperature as a function of time at the

corresponding fixed spatial location.

* Research sponsored by the U.S. Army Research Office

under MIPR No. ARO 63-82 -A
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The present study centers around a novel computational technique

designed especially for coping with the nonlinear case of tempera-

ture dependent thermal properties. It is a sequel to [1] where the

linear quarter plane problem with constant coefficients, was tho-

roughly analyzed. As was shown there, in that case, the inverse

problem can be formulated either as a Volterra integral equation

of the first kind, or equivalently, as an initial value problem

for the one dimensional heat equation run sideways. Either formu-

lation leads to an improperly posed problem in which the solution,

when it exists, depends discontinuously on the data.

The inverse problem can be regularized in the L2 norm by placing an

a-priori bound M on the norm of the unknown temperature history,

f(t), at the inside wall x = 0; at the same time, the measured noisy

temperature data g (t), at the location x = k > 0, is regarded as
m

differing by at most e in the L2 norm from unknown smooth exact data

g(t), for which a solution exists. It is assumed that c and M are

known and compatible. As shown in [1, equations (2.20), (2.21)] this

leads to explicit formulae for the temperature and gradient histories

at each fixed x, 0 < x < £. Also, error estimates are obtained for

the regularized solutions implying Holder continuity with respect to

the data, for each fixed positive x. These estimates degenerate at

the wall, [1, Theorem 1].

The regularization procedure can be interpreted as solving the

initial value problem for the sideways heat equation with appro-

priately modified initial data. An explicit finite difference
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scheme consistent with that problem is shown to be unconditionally

convergent, when used with the filtered initial data, [1, Theorem 3].

This step-by-step marching scheme in the x-variable is the basis for

our approach to the nonlinear case of a temperature-dependent dif-

fusion coefficient. We regularize the calculation at each step by

filtering in the frequency domain, using FFT algorithms; we then

return to the physical variables for the calculation of the next

step. The filtering function used at each step is that determined

by the related constant coefficient problem. This algorithm is

outlined in [1, Section 7].

In order to test the robustness of this procedure, an example was

manufactured with a known exact solution. This is a fictitious

mathematical problem, artificially created so as to have a solution

which simulates conditions presumed to exist in a 155mm cannon. The

relevant parameters were made available to us by Dr. A. K. Celmins,

U.S. Army Ballistic Research Laboratory, Aberdeen Proving Grounds,

Maryland. The "exact" solution was constructed numerically by

solving a well posed direct problem as explained below.

2. The Direct Problem

Consider the initial boundary value problem

a au
(2.1) au = -a [a(u) -- ], 0 < x < k, t > 0,

at ax ax

(2.2) u(O,t) = f(t), u(1,t) = h(t), t > 0,

(2.3) u(x,O) = 300' K
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where t is the time measured in milliseconds, x measured in

millimeters represents distance away from the inside wall, and

u(x,t) is the temperature in degrees Kelvin. The heat conduction

equation (2.1) is a simplification of the actual physical situation,

in that first order terms arising from cylindrical symmetry have been

neglected, as well as the variation of specific heat with tempera-

ture. Moreover, for gun steel at temperatures between 3000 K and

10000 K, the conduction coefficient a(u) in (2.1) is well approxi-

mated by a linear function of u,

(2.4) a(u) = {1.299 - 1.144 x 10-3 (u - 255)1 x 10- 2 mm2/millisec

We remark that the methodology to be discussed can easily accommodate

the more exact differential equation, as well as more complicated

dependencies of a(u) on u . We shall refer to the quantity

(2.5) w(x,t) = -a(u) a -

as the temperature gradient, by an abuse of terminology. It is

measured in mm* K/milliseconds. In all Figures shown below dealing

with plots of w(x,t) as a function of t for some fixed x , the

vertical axis bears the legend "temperature gradient."

The functions f(t) and h(t) in (2.2) represent, respectively, the

temperature histories at the inside wall and at imm away from the

wall. These mathematical functions are plotted in Figure 1; they

are constructed so as to approximate observed temperature histories

in gun barrels, [4].
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The direct problem given by (2.1), (2.2), and (2.3) was solved

numerically, using an adaptive partial differential equation software

package, MOLID, [3]. The numerical integration was carried out to a

distance in time equal to 100 milliseconds. The temperature u(x,t)

and gradient w(x,t) were evaluated at various fixed values of x ,

as functions of time, and stored for subsequent comparisons. Figures

2 and 3 show the histories of u and w at x = .25mm. As is

evident from Figure 3, the numerical calculation of w is not free

from noise. Nevertheless, we use the term "exact solution" for any

history obtained by the above numerical computation of the direct

problem. All histories are records consisting of 400 equispaced

samples on the time interval [0,100] milliseconds.

3. The Inverse Problem

The physical region of interest here is the x interval between

0 and .25mm. The histories in Figures 2 and 3 simulate what might

have been recorded by a thermocouple at .25mm away from the inside

wall as the shell is fired. The object is to use such data to re-

construct the temperature and gradient histories, arbitrarily close

to the inside wall. In actuality, two thermocouple readings are

necessary at x = x0 and x = xi, with x0 < .25 < x1; a well posed

direct calculation, as in Section 2 above, then yields u and w at

x = .25mm. As noted in the references given in [1], this type of

inverse problem occurs in a variety of heat transfer contexts. The

purpose of our computational experiment is as follows:

a) To demonstrate the feasibility of the inverse calculation

in a realistic situation in which rapidly varying solutions
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and nonlinearity play a role. As may be seen from Figure 1,

the postulated temperature at the wall rises from 3000 K to

almost 10000 K in the first 10 milliseconds. In this

temperature range, the conduction coefficient a(u) given

by (2.4) undergoes a 280 percent change.

b) To demonstrate the robustness of our algorithm with noisy

data and a fine grid.

c) The regularized marching procedure we shall use is a

powerful general method, applicable to other ill-posed

evolutionary partial differential equations, linear and

nonlinear. As used here, it is an adaptation to the non-

linear case of an algorithm which is rigorously justified

in the constant coefficient case. While the heuristic

"local mode analysis" underlying our regularization is

likely to be valid in many other cases of ill-posed

initial value problems, there is a need for well-documented

realistic inverse calculations.

Let z = x - x and let a0, a1 be positive constants such that

(3.1) 0 < a0 < a(u) 4 a1 .

da

Let b(u) = -- , and let v(z,t) = u(x,t). Using (2.5), we may writedu

(2.1) as an equivalent first order system

w
(3.2) v - , w = v , 0 < z < Z, t > 0,z a(v) ' z t

with the subscript notation used for partial derivatives.
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to be integrated in the direction of increasing z from z = 0 to

z = t; we use the initial values given in Figures 2 and 3 and the

following boundary conditions at t 0,

(3.3) v(z,O) = 3000 K, w(z,O) 0.

Let Az be the increment in the z-variable and let t = (N + 1)Az.

Let vn(t), wn(t) denote, respectively, v(nAz,t), w(nAz,t), for

0 < n < N + 1. The following finite difference approximation is

second order accurate and explicit,

Z n(t) Az2 vt n

(34) vn+l(t) = vn(t) + AZ ---- - -Z- v(t)

a(v n () 2a(vn(t))

Az2 b(v n(t))[wn( t)]
2

2a (v (t))

(3.5) wn+l(t) = wn(t) + Azv (t) +---------

t 2a(vn(t))

AZ2 b(vn(t)) wn(t) Vn(t)

2a (vn(t))

An effective way of implementing this scheme is to use cubic spline

interpolation at the 400 equally spaced mesh points on the time

interval [0,T]. Differentiating the spline function produces

O(At 3) accurate derivatives v (t), wt(t) at these same mesh points,
t t

and hence vn+I(t), wn+ (t) from (3.4), (3.5). The next step is to

stabilize this process by filtering each of these functions in the
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frequency domain. This is accomplished by dividing the kth Fourier

coefficient by the precomputed weight Xk, where

2 21kln AzlA

(3.6) Xk (1 + 2 exp [ k ]) .
aoT

E 2there w (c) is the L noise to signal ratio. See [1].
M

With k = .25mm, the x-interval [0,t] was divided into 450 equally

spaced mesh points, and the above procedure was implemented with

= .001. Figures 4 through 11 summarize the comparison between

exact and computed solutions at the interior location x = .056mm.

An idea of the relative errors in the calculation is easily gained

from Figures 7 and 11. Although the "logarithmic convexity"

estimates in Theorem 1 of [11 degenerate at the wall, the computa-

tion was pursued for 450 cycles and approximations to the temperature

and gradient histories at the wall were obtained. These are shown

in Figures 13 and 17. The "exact" temperature and gradient histories

at the wall are shown in Figures 12 and 16. Clearly, slight in-

accuracies in the well-posed direct calculation of u(x,t) near x = 0,

lead to a rather noisy determination of the exact w(x,t) at x = 0; in

particular, the pronounced spike near t = 40 milliseconds in Figure

16 is a numerical artifact which should be disregarded. Nonetheless,

we have chosen to compare the computed gradient history in Figure 17

with the wall profile given in Figure 16. As is evident from Figures

15 and 19, the wall estimates obtained by solving the inverse problem

are quite reliable. This is especially true during the first twenty

or so milliseconds where peak values are achieved.

- 8-



4. Conclusions

A regularized marching algorithm has been shown to be effective in

solving nonlinear inverse heat transfer problems in gun barrels. In

[2], a similar technique was used successfully on linear backwards

parabolic equations with highly variable coefficients. More

recently, success has also been achieved on other unstable examples

involving Burgers' equation with the time direction reversed.

Future work should be directed towards problems in two or more space

dimensions in general domains, in the context of heat transfer and

fluid mechanics.
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